参考文献

🏷sec_Reference

Berger, 2021
Michele W.Berger. A new theory for what's happening in the brain when something looks familiar. ScienceDaily, 2021, 5.
Boureau, 2010
YLan Boureau, Jean Ponce, Yann LeCun. A Theoretical Analysis of Feature Pooling in Visual Recognition. Proceedings of the 27th International Conference on Machine Learning (ICML), 2010:111--118.
Boureau, 2011
YLan Boureau, Roux N L, Bach F, Yann LeCun. Ask the locals: Multi-way local pooling for image recognition[C]. Proc. International Conference on Computer Vision (ICCV'11).IEEE, 2011.DOI:10.1109/ICCV.2011.6126555.
Chollet, 2016
Francois Chollet. Xception: Deep Learning with Depthwise Separable Convolutions. arXiv, 2016/1610.02357.
Fleisch, 2011
Fleisch, D. A Student's Guide to Vectors and Tensors. Cambridge University Press, 2011.
Girshick, 2014
Ross B. Girshick, Jeff Donahue, Trevor Darrell and Jitendra Malik. Invariant visual representation by single neurons in the human brain. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014:580--587.
Girshick, 2015
Ross B. Girshick. Fast R-CNN. IEEE International Conference on Computer Vision (ICCV), 2015:1440--1448.
Goodfellow, 2013
Ian Goodfellow, David Warde Farley, Mehdi Mirza, Aaron Courville, Yoshua Bengio. Maxout Networks. arXiv, 2013:arXiv1302.4389.
Goodfellow, 2014
Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Xu Bing, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative Adversarial Nets. Neural Information Processing Systems (NISP), 2014.
Goodfellow, 2016
Ian Goodfellow, Yoshua Bengio, Aaron Courville. Deep Learning. MIT Press, 2016.
He, 2015
{Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. Deep Residual Learning for Image Recognition. arXiv/1512.03385, 2015.
He, 2016
Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. Deep Residual Learning for Image Recognition. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016:770--778.
He, 2017
Kaiming He, Georgia Gkioxari, Piotr Doll and Ross Girshick. Mask R-CNN. IEEE International Conference on Computer Vision (ICCV), 2017:2980-2988.
Howard, 2017
Howard Andrew G, Zhu Menglong, Chen Bo, Kalenichenko Dmity, Wang Weijun, Weyand Tobias, Andreetto, Adam Hartwig. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications[J]. 2017.DOI:10.48550/arXiv.1704.04861.
Huang, 2016
Gao Huang, Zhuang Liu and Kilian Q. Weinberger. Densely Connected Convolutional Networks. Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 4700-4708.
Hubel, 1959
Hubel, D. H. and Wiesel, T. N. Receptive Fields of Single Neurons in the Cat's Striate Cortex. The Journal of Physiology, 1959.
Hubel, 1962
Hubel, D. H. and Wiesel, T. N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. The Journal of Physiology, 1962.
Hubel, 1968
Hubel, D. H. and Wiesel, T. N. Receptive Fields and Functional Architecture of Monkey Striate Cortex. The Journal of Physiology, 1968, 195(1):215--243.
Jaynes, 2003
Jaynes, E.T. Probability Theory: The Logic of Science. Cambridge University Press, 2003.
Jia, 2012
Yangqing Jia, Chang Huang, Trevor Darrell. Beyond spatial pyramids: Receptive field learning for pooled image features.2012 {IEEE} Conference on Computer Vision and Pattern Recognition, 2012:3370--3377.
JT, 2014
JT Springenberg, A Dosovitskiy, Brox T, and Riedmiller M. Striving For Simplicity: The All Convolutional Net. eprint arxiv, 2014.
Kolter, 2008
Kolter, Z. Linear Algebra Review and Reference. Available Online Http, 2008.
Krizhevsky, 2012
Alex Krizhevsky, Ilya Sutskever and Geoffrey E. Hinton. ImageNet Classification with Deep Convolutional Neural Networks. Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems (NIPS), 2012:1106--1114.
Kunihiko, 1980
Kunihiko and Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 1980.
LeCun, 1989
Yann L C, Lawrence D J, Bernhard E B, et.al. Handwritten digit recognition: applications of neural network chips and automatic learning[J]. IEEE Communications Magazine, 1989, 27(11):41-46. DOI:10.1109/35.41400.
LeCun, 1998
Lecun Yann, Bottou Leon, Bengio Yoshua and Haffner Patrick. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324.DOI:10.1109/5.726791.
LeCun, 1998c
Yann LeCun, Leon Bottou, Yoshua Bengio and Patrick Haffner. Gradient-based learning applied to document recognition. Proceesing, 1998, 86(11):2278--2324.
Lin, 2013
Lin M, Chen Q, Yan S Network In Network. Nature, 2013.DOI:10.48550/arXiv.1312.4400.
Liuhui, 200
Liu hui. 九章算术. 200.
Marr, 1976
D Marr and T Poggio. Cooperative computation of stereo disparity. Science, 1976.
McGrath, 2021
Thomas McGrath, Andrei Kapishnikov, Nenad Tomasev, Adam Pearce, Demis Hassabis, Been Kim, Ulrich Paquet, Vladimir Kramnik. Acquisition of Chess Knowledge in AlphaZero[J]. arXiv e-prints, 2021.DOI:10.48550/arXiv.2111.09259.
Naumann, 2008
Naumann U. Optimal Jacobian accumulation is NP-complete[J]. Mathematical Programming, 2008, 112(2):427-441.DOI:10.1007/s10107-006-0042-z.
Pearl, 1991
Pearl J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference[J]. Morgan Kaufmann Publishers, 1991. DOI:10.2307/407557.
Petersen, 2006
Petersen, K. B. and Pedersen, M. S. The Matrix Cookbook. Technical University of Denmark. 7(15), 510., 2006.
Quiroga, 2005
Quiroga R, Reddy L, Kreiman G, Koch C. Invariant visual representation by single neurons in the human brain. Nature, 2005.
Redmon, 2016
Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick and Ali Farhadi. You Only Look Once: Unified, Real-Time Object Detection. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016:779--788.
Redmon, 2017
Joseph Redmon, Ali Farhadi. YOLO9000: Better, Faster, Stronger. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017:6517--6525.
Redmon, 2017
Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 2015, 115(3):211-252.
Redmon, 2018
Joseph Redmon, Ali Farhadi. YOLOv3: An Incremental Improvement. eprint arxiv/1804.02767, 2018.
Ren, 2015
Shaoqing Ren, Kaiming He, Ross B. Girshick and Jian Sun. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information Processing Systems (NIPS), 2015:91--99.
Rosenblatt, 1958
Rosenblatt and F. The perceptron: a probabilistic model for information storage and organization in the brain.. Psychological Review, 1958, 65:386-408.
Rosin, 1933
"Rosin, P.; Rammler, E. The Laws Governing the Fineness of Powdered Coal.. Journal of the Institute of Fuel, 1933, 7:29-36.
Shilov, 1977
Shilov, G. E.Linear Algebra. Dover Books on Mathematics Edition, 2003.
Simard, 1992
Patrice Y. Simard, Yann LeCun, John S. Denker, C. Lee Giles. Efficient Pattern Recognition Using a New Transformation Distance. Advances in Neural Information Processing Systems Conference
Simonyan, 2014
Simonyan, K. and Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. Computer Vision and Pattern Recognition (CVPR), 2014.
Strang, 2003
Gilbert Strang. Introduction to Linear Algebra [Fifth Edition](J). Wellesley-Cambridge Press, 2003, Vol. 3.
Szegedy, 2015
Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke and Andrew Rabinovich Going deeper with convolutions. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2005:1--9.
Szegedy, 2017
Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke and Alexander A. Alemi. Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. Proceedings of the Thirty-First Conference on Artificial Intelligence (AAAI), 2017:4278--4284.
Tolstikhin, 2021
Tolstikhin I , Houlsby N , Kolesnikov A ,et al. MLP-Mixer: An all-MLP Architecture for Vision[J]. 2021. DOI:10.48550/arXiv.2105.01601.
Vries, 2018
Vries Sejd, Lecoq J, Buice M. A., Groblewski P. A. and Koch, C. A large-scale, standardized physiological survey reveals higher order coding throughout the mouse visual cortex. Cold Spring Harbor Laboratory, 2018.
Xie, 2017
Saining Xie, Ross B. Girshic, Piotr Dollar, Zhuowen Tu and Kaiming He. Aggregated Residual Transformations for Deep Neural Networks. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017:5987--5995.
Zhang, 2018
Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, Jian Sun. ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018:6848--6856.
Zhang, 2021
Zhang Aston, Lipton Zachary C, Li Mu and Smola Alexander J. Dive into Deep Learning. arXiv preprint arXiv:2106.11342, 2021.
Zhou, 1988
Zhou Y T, Chellappa R. Computation of optical flow using a neural network[C]. Neural Networks, 1988. IEEE International Conference on.IEEE, 2002.DOI:10.1109/ICNN.1988.23914.
盛骤, 2020
盛骤. 概率论与数理统计(第五版). 北京:高等教育出版社, 2020.